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USE OF LINEARIZED NONLINEAR REGRESSION FOR SIMULATIONS
INVOLVING MONTE GARLB

John E. Walsh
System Development Corporation

Often, for each simulation situation, a computer run involving Monte
Carlo is expensive and time consuming. However, simulation outcomes are
usually desired for a very large number of situations, One solution to this
difficulty is, from a feasible number of runs, to develop a procedure for
estimating the simulation outcome for a large class of situations., This esti-
mation is of a regression nature, The type of regression function used should
(1) have substantial curve-fitting flexibility (2) be satisfactorily deter-
mined from an acceptable number of simulation runs (3) permit isolation of
important combinations of effects, and (4) be computationally manageable.
It is also highly desirable that (5) the regression analysis has a satiss
factory probability basis, so that the accuracy of the fit from the data can
be investigated. The linearized nonlinear regression method presented here
satisfies (1)=(4), and some nonprobabilistic curve-fitting procedures for deter=
mining a regression function are outlined. This regression method seems to also
satisfy (5) and the probability basis developed, along with some estimation re-
sults, is presented, Use of the linearized nonlinear regression method has

desirable features for optimizations.

Invited paper presented at the First Joint TIMS-ORSA National Meeting,
San Francisco, California, November 8-10, 1961
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INTRODUCTION

For the cases considered; a simulation modei invelving Monte Carlo is
programmed for application on a high-speed eoﬁpubéri This mathematical
model 1s completely specified except for the values of some constants which
will be termed inputs. Some of the inputs refer to the initial and other
gide conditions, The other inputs are the values of constants that oceur in
the functional form for the model. Each possible choice for the values of the
inputs represents a simulation situation.

Given the inputs, a computer run of the simulation process yields an ob-
served value for each of the outputs that is considered, These outputs re=
present the results of this random simulation. Of course, any specified funmc=
tion of the directly recorded outputs is also an output. For the casés con-

For a fixed set of input values, the observed values for a specified
output are a random sample from a univariate statistical population, The
properties of these statistical populations (a possibly different population
oceurs for each set of input values) are the quantities of interest. Esti-

mation of the "value" of a specified output refers to estimation of some

-

suitable "average" property of the statistical population for this output,

Considered over a number of sets of input values, the "average" used is
a function of the inputs. In general, this function (referred to as the
"average" function) can depend on the totality of sets of input values that
receive consideration, However, use of this function to furnish "average"
values for other sets of inputs ordinarily should not result in great error

when these other sets are of an interpolation nature with respect to the sets
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on which the "average" function is based. As an aid in the development of a
suitable probability model, a special type of "average" function (a generali-
zation of the median concept) is used in this paper.

The problem is to develop a satisfactory method for estimating the "average"
acceptable number of computer runs. Since statistical variation is involved,
this estimation falls under the general heading of regression. However, a com=
bination of desirable features occurs that is seldom present for regression
analyses based on data from the usual types of experimental sources, These
features include: (a) Any desired number of observed values for the output
are obtainable for any specified sét of values for the imputs (b) All observed
tically independent (c) There are no missing value difficulties.

For the linearized nenlinear regression method, the "average" function for
estimating the output is represented implicitly. This representation is an
equation with one side equal to a sum of unknown constants times completely
specified functions of the values of the inputs. The other side equals the
value of the (unknown) output plus a sum of unknown constants times completely

specified functions of the value of the output, Given values (estimates) for

the unknown constants, and the values of the imputs, the estimate of the corres-

ponding output is determined by solution of the resulting equationm, .
Conditions are imposed to assure that there is a unique solution for the

output. As is usual for regression analysis, the completely specified functions
are chosen on the basis of technical considerations and judgmen;. Here, however,
a poor selection can often be discovered and improved on the basis of additional

simulations,

‘.
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With suitable choice of the completely specified functions, a comsiderable
amount of curve=fitting flexibility can be obtained without the introduetion
of very many unknown constants. Since only a moderate number of constants are
to be estimated, reasonably stable estimates should be obtainable without an
excessively large number of simulation runs, The linearity of the representation
implies that important combinations of effects (specified linear functions of
the unknown constants) can be isolated without diffieulty; also cﬁét most of the
computations to be performed are of a linear nature and therefore not overly
difficult.

Two types of methods aré presented for determining linearized nonlinear

gression function). One method does not have a probabilistic basis and the
constants are deteérmined on the basis of curve-fitting criteria. For the other
method, approximate median estimatés and approximate confidence intervals are
obtained for the unknown values of the constants. The nonprobabilisti¢ method
is easier to apply and, to some extent, its suitability can be checked by
further simulations. The probabilistic method allows direct evaluation to be
made of the effects of statistical variation on the estimates for the constants
in the regression function,

Any probability model developed shouid, from practical necessity, be valid
for virtually all Monte Carlo simulations and linearized nonlinear regression
functions that might reasonably be encountered. The probability model given
in this paper has this generality of application. A further development, for
which work is now underway, consists in deriving approximate confidence intervals
for the sum of the terms which involve the inputs (for any specified set of

values for these inputs). These confidence intervals would permit investigation

[N ST S
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of the over-all effect of statistical variation on the regression function for
a stated set of input values.

Consider a measure of effectiveness whose value is a function of the direct
outputs of the simulation. For example, this might be the total worth of the
targets destroyed for an offense versus defense simulation. This measure of
effectiveness is itself an output which depends on the inputs (in an unknown
fashion) and can be represented by a linearized nonlinear regression function.
Stepwise maximization (or minimization) of this output can be conveniently
accomplished by appropriate use of the regression method presented in this
paper.

It should, perhaps, be emphasized that the estimation function is only
intended for use in situations of an interpolation nature. That is, situations

where the set of values for the inputs has an interpolation position with res-

gression functioen.

The next section contains some discussion, a statement of notation, and a
brief general introduction to regression analysis. The following section
presents a general statement of the linearized nonlinear regression model.
Curve-fitting methods for determining a regression function are considered in
the next section. The next to last section contains a statement of the proba-
bility model and presents point estimates and confidence intervals for the

unknown constants in the regression function. The final section contains an

outline of the method used to optimize a measure of effectiveness.
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DISCUSSION AND NOTATION
In many senses, regression consists of curve=fitting in the presence of

statistical variation. Linear regression; which expresses the "average" value
of the output as a linear function of the imputs (or completely specified func=
tions of the inputs) has computational advantages but restricted curve=fitting
flexibility, 1In many cases, poor agreement between observed values of the out-
put and their regression estimates may be due to inability of the linear func-
tional form to provide a good fit rather than a result of large statistical

variation. A basic problem is to develop a regression method that has sub-

computational properties that occur for linear regression.
Let y represent the output while Xy 00X, Tepresent the inputs. The data

for the i-th of n simulations is represented by
wi”‘li""”‘kﬁ’ (1=1,,..,n).
Then, in general, a regression relation can be expressed in the form
y = h(xl""’xk;Al”""Ai;)’

where the function h is completely specified except for the values of the um-

known constants Al"' Y .\

A That is,

yi = h(xli’...’xki;Al’...,At) + e_i; (i = 1;999;!!)?

where the e, are random errors and, for the situations considered in this paper,

statistically independent.
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It is to be emphasized that, in general, each of the e; could have a
substantially different (unknown) probapility distribution. Also, the use
of a regression function with a large amount of curve-fitting flexibility is
helpful in reducing the magnitude of the e , since a part of this magnitude
18 due to inability of the regression function to adequately represent the

"fiked parts" of the ¥y

LINEARIZED NONLINEAR REGRESSION MODELS

Let the range of possible values for y be VLS < Yy vhere y, = =«
and Yy = ® ate possibilities., The approach consists in expreasi,‘;‘g the re-
gression function in a transformed manner. Specifically, let gl(y) PY ,gs('y) ’
usually monotonic for /3 Sy S ¥y, be specified functions of y while g§+2(x1,
corsX) _,...,gt('x-_l,... s%,) are specified functions of x),...,x,. The regression

function is expressed as

where A,,...,A are restricted by the condition that y + ... +A_g (y) is a
monotonic function of y for y, Sy Sy If h(xl,... 21Xy ihgeee ,At) denotes

the solution of equation (1) for y in the range YLSY SVy

ys= h(xl,. .o )xksél;q ve ,A,t)

is an alternate way to express the regression function, This alternate ex-

pression is used to estimate y for given (x,,...,x.).

The functions g_ ,s+++,8, are selected on technical grounds while Byreees8

are selected partially for curve-fitting gemerality and partially on technical
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grounds; none of gl(y),.s.,gs(y) is linear in y. Use of y as one of the linear
terms of (1) represents a standardization; it also assures that linear regression
can occéur as a special case.

The lineatr form of (1) with respect to Al""’At allows many types of speci-
fied linear combinations of A,...;A, to be isolated by the solution of linear

équations. Since y is a monotonie function of the quantity

AS+1 + A§+2g§+2(x1,...,xk) ¥ vee # Atgt(xi,...,xk),

isolation of specified linear combinations of A, 1900+ 0A, are of especially
great interest.
Not all types of specified linear combinations of Al""’At can be iso-

lated by the straightforward procedure of solving linear equations. The values

of Al""'As are restricted by tlie monotonicity c¢ondition on y + Algl(y) +
A A's»g‘s(}')' However, some number of Agyeee ?Aa can be considered to have

restricted values. Any specified linear combination of Ag yre++9A, ond an un-

restricted subset of Al,...,As can be igolated by the solution of linear equations.

CURVE-FITTING RESULTS
Here the problem is to obtain point estimates for Al?""Ae on the basis
of the (yisxli,,..,xki) and a criterion that seems to be intuitively satisfactory

but for which no specific probability basis is established. Actually, estimation

of A 1see)A, and a maximum number of unrestricted constants of the set A,,

vessA 18 all that is explicitly considered. For conveniénce of presentatien,

Ayyeee,A ) are considered to be restricted while the values of A ,...,A are

unrestricted.
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The relations that furnish the basis for the estimation are
Q) yyHA 18 )+ tA B (7)) = Ag A, o8By (Rygaee e s ) be A B (g g5e ety g)

for 1 = 1,,,.,n, The first step is to combine these relations 0 that n new
relations are obtained which are linear in A ,...,A and do not contain A ,...,A, 4.
This can be accomplished in many reasonable ways by forming n overlapping groups

of relations, where each group contains r relations. Then, for each group, a
combined linear relation is determined wherein Aj,...,A , are eliminated.

Let the relations resulting from these combinations be

K,y + K,

L » ti't?

1= 1,...,n, vhere the K's have determined values. Then least-squares is used
to determine estimates for A ,...,A... That is, the estimates are the values
such that

n

N 7 ‘ ) _ . 2
/ (K,Gi + Kl-r‘iAE + e0e * 'K‘Bi'AB - K(H-l)iAB'Fl T eee “tit

i=1

is minimum. There are standard procedures, also computer programs, available
for handling this least-squares situation,

Given estimates for Ag,...,Ag, determination of suitable estimates for
AjseersA  y Tepresents a specialized problem that depends on g)(y),...,8,0).

However, in any given case where these functions are strictly monotonic and r

is small, solution of this specialized problem should not be overly difficult.
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In particular, determining a suitable estimate for A, should not be difficult
for cases where r = 2,
The estimation method outlined here is but one of many possible types.

However; it does have the advantages of a reasonable intuitive basis and ease

of application.

The output ¥y has a probability distribution but the corresponding inputs
xli""’xki have fixed values. The y; are independeiit but the shape of the
distribution of ¥y is not assumed to bear any déefinite relation to the shape of
the distribution of y 3 for 1 # j. .

The key feature of the probability model, which allows useful results to
be developed for heterogeneous cases, is the method used to define what Al,a..,AE
represent. That is, to specify the type of "average" function that is considered.

By some data manipulations, a few "observations" are constructed that are

statistically independent and of the form

Y(\;;V) = Av + g(g;v), (u= 1;999;0‘)?

vhere e(u;Vv) represents the random error. Let p(u;v) be the value of P[Y(u;v)

£ A,] and define A by th

v the requirement that the arithmetic average of p(u;v)

over u is equal to %a Then an approximate median estimate can be obtained for

A, on the basis of Y(1;v),...,Y(U;Vv). Also, confidence intervals can be ob-

tained for A that have confidence coefficients which are nontrivially bounded

from below.
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The first step consists in dividing the n relations (2) into mutually
exclusive groups of size t (some groups may be of size t + 1). To avoid bias,
and not as a part of the underlying probability model, randomization is used
to make the subdivision into sets (8o that all possible subdivisions are equally
likely). Next, separately for each set, by solution of t linear equations in
t unknowns, a value is determined for each of AjseeasAl. For n reasonably large
compared to t, this furnighes a number of geparate "estimates" for A (v = i,n.,t),

Next, for each A , its "estimates" are grouped into U classes, where each
class contains approximately the same number of "estimates" (some classes may
contain one more "estimate" than others). The grouping into classes is the same .
The "observation" Y(u;v) is the arithmetic average of the "estimates" for A, that
occur in the u-th class.

The value chosen for U should not be too large and, for cenvenience in ob=
taining approximate median estimates, should be odd. Also U should not be too
small (say, U > 5); otherwise suitable values are not available for the lower
bounds for the values of confidence coefficients,

The approximate median estimates and confidence intervals for Av are based

on order statistics of the Y(u;v). Let
YV[IJ 5 Yv[2] § tee S. Yv[U]

be the ordered values of Y(1;v),...,Y(U;v) and suppose that U is odd. Then '

xv[(u + 1) /2] is approximate median estimate of A . That is,

LsPly [(W+ 1D/2]lsA)s1 -1,
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vhere L « 1 but 1s not greatly differemnt from

3;

D=
L]
1l
w

Here L = .438 for U

rol

1

s .421 for U =5, = 414 for U = 7; = .410 for U = 9, and = .407 for U = 11,
These results are obtained on the basis of the material presented in ref. 1.

The following relations define approximate confidence intervals for

A, (v=1,..:,t)

P(Y[u1]<A <Y[u])2< Z (>

u=u

where Uy < u/2, u, > U/2, YVIO] 2 = o, and Yv[n 4+ 1] = », These results follow
directly from ref. L.

If n is large, the distributions of Y(1;v),...,Y(U;v) are approximately
continuous and should be at least roughly the same. Then Y [(U + 1)/2] should
be very nearly a median estimate of A and the values of the confidence co-
efficients should nearly equal the lower bound values (see ref. 2 and 3).

As for the curve-fitting case, a complication arises because Al""’As
are restricted. Here too, the procedure is to first obtain estimates for a
set such as A ,...,A and then consider estimation for the restricted set

AjseeesA ). The confidence intervals that are obtainable for each of A;,...,A

can be useful in determining the estimates for these unknown constants.

The probability model used is based on the general approach presented in

ref. 3, That is, this is a

o
L)
By~
]
0
re
©
ot

case where the "median" is the generalized

i

percentage point that is considered.

OPTIMIZATION USE

Here the output considered is a measure of effectiveness that depends (in

some unknown way) on Xys+++ % The problem is to determine a set of values for

Xjseeo Xy that is optimum (for example, that maximizes this output).
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As a preliminary step, the values of s,t are chosen and the functions
Bysere,8, are decided upon. Then a first approximation to the measure of
efféétLVenGSS, as a function of the x's, is obtained for sets of values that

cover a broad region in the (xl,...,xk>i§@ﬁée. Examination of this resulting

region in which the optimum.xl,...,xk can be expected to lie.

Additional observed outputs are obtained for values of Xyseos sk in the
restricted region and the regression function is redetermined exclusively on
the basis of observations pertaining to this region. Examination of this second
approximation to the measure of effectiveness as a function of Ryseees¥y ghould
yield a further decrease in the size of the region where the optimum point
should lie, Continuation of this procedure through several stages should

ordinarily furnish a good approximation to the optimizing value of XyseeesXpe

1 Hoeffding, Wassily, "On the distribution of the number of successes in
independent trials,” Annals of Mathematical Statistics, Vol. 27 (1956),

2. Walgh, John E., "Approximate probability values for observed number of
successes from statistically independent binomial events with unequal proba-

bilities," Sankhyd, Vol. 15 (1955), pp. 281-290

3, Walsh, John E., "Definition and use of generalized percentage points,"

Sankhyd, Vol. 21 (1959), pp. 281-288
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